Three-dimensional structure of the human copper transporter hCTR1.
نویسندگان
چکیده
Copper uptake proteins (CTRs), mediate cellular acquisition of the essential metal copper in all eukaryotes. Here, we report the structure of the human CTR1 protein solved by electron crystallography to an in plane resolution of 7 A. Reminiscent of the design of traditional ion channels, trimeric hCTR1 creates a pore that stretches across the membrane bilayer at the interface between the subunits. Assignment of the helices identifies the second transmembrane helix as the key element lining the pore, and reveals how functionally important residues on this helix could participate in Cu(I)-coordination during transport. Aligned with and sealing both ends of the pore, extracellular and intracellular domains of hCTR1 appear to provide additional metal binding sites. Consistent with the existence of distinct metal binding sites, we demonstrate that hCTR1 stably binds 2 Cu(I)-ions through 3-coordinate Cu-S bonds, and that mutations in one of these putative binding sites results in a change of coordination chemistry.
منابع مشابه
A re-evaluation of the role of hCTR1, the human high-affinity copper transporter, in platinum-drug entry into human cells.
Cisplatin (cDDP) is an anticancer drug used in a number of malignancies, including testicular, ovarian, cervical, bladder, lung, head, and neck cancers. Its use is limited by the development of resistance, often rationalized via effects on cellular uptake. It has been claimed that human copper transporter 1 (hCTR1), the human high-affinity copper transporter, is the major entry pathway for cDDP...
متن کاملTranscription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells.
Copper is an essential metal nutrient, yet copper overload is toxic. Here, we report that human copper transporter (hCtr) 1 plays an important role in the maintenance of copper homeostasis by demonstrating that expression of hCtr1 mRNA was up-regulated under copper-depleted conditions and down-regulated under copper-replete conditions. Overexpression of full-length hCtr1 by transfection with a ...
متن کاملCisplatin stabilizes a multimeric complex of the human Ctr1 copper transporter: requirement for the extracellular methionine-rich clusters.
Cisplatin is a highly effective cancer chemotherapy agent. However, acquired resistance currently limits the clinical utility of this drug. The human high affinity copper importer, hCtr1, and its yeast and murine orthologues have been shown to mediate the uptake of cisplatin. This transporter is located at the plasma membrane under low copper conditions, and excess copper concentrations stimula...
متن کاملMechanistic comparison of human high-affinity copper transporter 1-mediated transport between copper ion and cisplatin.
The human high-affinity copper transporter (hCtr1) plays an important role in the regulation of intracellular copper homeostasis. hCtr1 is involved in the transport of platinum-based antitumor agents such as cisplatin (CDDP); however, the mechanisms that regulate hCtr1-mediated transport of these agents have not been well elucidated. We compared the mechanisms of hCtr1-mediated transport of cop...
متن کاملSpecificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high-affinity copper transporter 1 expression.
Copper is an essential micronutrient for cell growth but is toxic in excess. Copper transporter (Ctr1) plays an important role in regulating adequate copper levels in mammalian cells. We have shown previously that expression of the human high-affinity copper transporter (hCtr1) was transcriptionally up-regulated under copper-depleted conditions and down-regulated under replete conditions; moreo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 11 شماره
صفحات -
تاریخ انتشار 2009